Searching SciFinder Scholar

SciFinder Scholar is a powerful bibliographic database for chemistry and related subjects, such as, biomedical sciences, engineering, materials science, agricultural science, and more. SciFinder Scholar provides access to scientific information in journal and patent literature from around the world. It contains information on over 33 million single- and multi-step reactions, more than 3 billion predicted and experimental properties. In this database one can: (1) explore by chemical structure or biological sequences; (2) explore by research topic, author, company, substance name, or reaction; (3) stay up-to-date on today’s most recent scientific developments.

In order to access SciFinder Scholar, it is necessary to first create your own Scifinder personal account. Follow these steps:

1. Click on “Info” next to “SciFinder Scholar” on Jernigan Library’s “Online Resources Alphabetical List.”
2. Click on “password protected page.”
3. On “TAMUK Scifinder Scholar Registration Login page” enter username and password. Ask person at Jernigan Library’s Reference Desk (593-3319) to give you username and password so that you can access the “TAMUK SciFinder Scholar Registration Login Page.”
4. You will be taken to the SciFinder Scholar registration page, which has a link to PDF instructions and a link that will allow you to create your personal SciFinder login. **The registration link is for TAMUK students, faculty, staff only. Registration requires the use of your TAMUK email account.**
5. You will receive an email message from CAS with instructions for completing the registration process at the address you provided within the SciFinder User Registration form.

To sign on to SciFinder Scholar, type your SciFinder username and password in the Username and Password fields. Do not select “Remember my username.” Click on Sign In. The License Agreement page displays. After reviewing the license agreement, click Accept to proceed to use SciFinder. When you are done, please click on sign off.

We have only a single concurrent user license for SciFinder Scholar. Therefore, if someone else is using it, you will be unable to sign on. You’ll have to try again later.

The following instructions for searching SciFinder Scholar are taken from “SciFinder How to Guides – Web Version”: http://www.cas.org/support/scifi/htguides.html. For further information on searching SciFinder Scholar go to this Web Site.
I. Explore by Research Topic

1. Enter a topic of interest.

 Apply limits such as publication year(s), document type(s), language, author name, company name.

 Click Search.

SciFinder automatically searches related terms and considers alternate spellings and word endings when retrieving results.

Tips:

- Specify two or three concepts using plain English.
- Include prepositions and articles to connect the concepts.
- Place acronyms or synonyms in parentheses after the synonymous concept.
- Use “not” or “except” to exclude a particular term.
- Use limits to reduce the number of results in your answer set.

2. Select candidate references of interest according to the relationship of the terms and concepts within records. Click Get References.
Tips:

<table>
<thead>
<tr>
<th>SciFinder considers terms to be ...</th>
<th>When the terms are found ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>“As entered”</td>
<td>Exactly as you have entered them.</td>
</tr>
<tr>
<td>“Closely associated with one another”</td>
<td>Within the same sentence or title.</td>
</tr>
<tr>
<td>“Present anywhere within a reference”</td>
<td>Anywhere (perhaps widely separated) within a record’s title, abstract, or indexing.</td>
</tr>
<tr>
<td>“Containing the concept”</td>
<td>In the record. The entered term(s), synonymous term(s), or similar term(s) are found within the record.</td>
</tr>
</tbody>
</table>

2. Review your answers

1. Aluminium-catalyzed intramolecular hydroamination of alkenes
 By Volker Jungblut, Benjamin, Robert S.
 From Clinical Communications (Cambridge, United Kingdom) (2011), 45(26), 4577-4579. Language: English. Database: CARSUS.
 A new aluminium complex bearing a dianionic phenylene-diamine based ligand has been synthesized and shown to catalyze the intramolecular hydroamination of various alkenes. E.g., the Al complex catalyzed the intramolecular hydroamination of CH₂CH₂CHOCH₂CH₂NH₂ to give 81% pyrrolidine derivate 1.

2. Intramolecular Hydroamination of Aminoketones by Calcium and Magnesium Complexes: A Synthetic and Mechanistic Study
 By Chinmoy, Mokhtari, Antovonk, Marlo; Barrett, Anthony G. M.; Casadei, Jan J.; Hill, Michael S.; Fiscopulo, Rongyin A.
 From Journal of the American Chemical Society (2009), 131(18), 6378-6379. Language: English. Database: CARSUS.
 The [dilithium-dimethyl-stabilized calcium amide complex [[(Ar(NMe)₂)₂]Me(CN)₂(CalMe₂)(Ar(NMe)₂)CN]Me₂][(THF)] (Ar = 2,6-dimethylphenyl) and magnesium Me complex [[(Ar(NMe)₂)₂]Me(CN)₂(CalMe₂)(Ar(NMe)₂)CN]Me₂][(THF)] are reported as efficient precatalysts for hydroamination/cyclization of aminoketones. The reactions proceeded under mild conditions, allowing the synthesis of five-, six-, and seven-membered heterocyclic compounds. Qualitative assessment of these reactions revealed that the ease of catalytic turnover increases (i) for smaller ring sizes (5 > 6 > 7), (ii) substrates that benefit from favorable Thorpe-Ingold effects, and (iii)
II. Analyzing Reference Answers

When references are displayed, an analysis of the answer set automatically appears at the right.

Analyze by Author Name is the default, and the first 10 analysis bars are displayed. Each bar represents a subset of the answer set. The number at the right indicates the number of answers in the subset.

To change the analysis category, select another option from the drop-down menu. For example, Publication Year.

1. Get related information for an individual reference.
2. Sort the answer set. Click on “Accession Number” and choose from Author Name, Citing References, Publication Year, Title.

3. Get related information for your answer set.

<table>
<thead>
<tr>
<th>Click...</th>
<th>When you want to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get Substances</td>
<td>Retrieve substance information related to the references</td>
</tr>
<tr>
<td>Get Reactions</td>
<td>Retrieve reaction information related to the references</td>
</tr>
<tr>
<td>Click “Get Related” and then “Get Citing”</td>
<td>Retrieve references that cite the references</td>
</tr>
<tr>
<td>Click “Get Related” and then “Get Cited”</td>
<td>Retrieve references cited in the references</td>
</tr>
</tbody>
</table>

Tip: To get related information for only a subset of the answers, select the references of interest before clicking one of the above four options. If no references are selected, related information is retrieved for the entire answer set.

4. Analyze or refine your answer set.

Use the drop-down menu and bars on the Analysis tab to view various subsets of your answer set. Use the Refine tab to narrow your answer set based on a variety of attributes.
III. Access Full Text

Locate reference (or references) of interest. From the reference answer set, click Full Text.

Or, from the Reference Detail, click Get Full Text.
IV. Explore by Substance Identifier

Use Explore by Substance Identifier to find a particular substance or group of substances by using a chemical name or CAS Registry Number.

1. Type a chemical name, trade name, or CAS Registry Number. Click Search.

![Explore Substances](image)

Note: You may enter up to 25 identifiers by placing one per line.

2. Review your answers. To view detailed information for a substance, click on Substance Detail or the CAS Registry Number.

![Substances](image)

May 2011 - IA